Nucleotides and Nucleic Acids WTH are they

What Are Organic Molecules?
Organic molecules contain carbon-hydrogen bonds, are found in living things and can be very large molecules. The major classes of organic macromolecules are  carbohydrates, proteins, lipids and nucleic acids.
 What Are Nucleotides really?
Nucleotides are monomers (small molecules) that are the building blocks of nucleic acids. Each nucleotide, and consists of 3 portions:
-a pentose sugar called ribose
-one or more phosphate groups
-one of five cyclic nitrogenous bases
Some nucleotides are put together to form nucleic acid (DNA & RNA) macromolecules, whereas others function on their own. ​
kjdsks
Nucleic Acid Structure
Nucleotides can be linked together by covalent bonds between the phosphate of one nucleotide and the sugar of next. These linked monomers become the phosphate-sugar backbone of nucleic acids. The nitrogenous bases extend out from this phosphate-sugar backbone like teeth of a comb.
Deoxyribonucleic Acid (DNA)
DNA (deoxyribonucleic acid) is the genetic material, the original blueprint, inside each biological cell. The molecule is double-stranded and twisted, like a spiral staircase, with the two sugar-phosphate chains as the side rails, and the nitrogenous base pairs, linked by hydrogen bonds, forming the rungs. In addition to linking the bases together, hydrogen bonding twists the phosphate-sugar backbones into a helix, thus DNA is a double helix.There are four different types of nitrogenous bases that can be found in a DNA molecule: adenine (A), guanine (G), cytosine (C) and thymine (T). Adenine and guanine are larger, double ring nitrogenous bases called purines. Cytosine and thymine are smaller, single ring nitrogenous bases called pyrimidines. When bases pair up between the two DNA strands, a purine always pairs with a pyrimidine. Specifically adenine (A) and thymine (T) pair up, and cytosine (C) and guanine (G) pair up. These bases are attracted to each other through hydrogen bonding.When the DNA molecule is inactive, the bases are linked by these hydrogen bonds and the molecule is in its spiral-shaped state. When DNA is being used—either being copied (a process called replication) or being employed to build proteins (involving the processes of transcription and translation)—the DNA molecule must be opened up, essentially “unzipped” between the bases.
ieee
Ribonucleic Acids (RNA)
In living organisms, RNA is a single stranded nucleic acid molecule. In viruses, non-living infectious particles, RNA can be single or double stranded.There are four different types of nitrogenous bases found in an RNA molecule: adenine (A), guanine (G), cytosine (C) and uracil (U). In RNA, uracil takes the place of the thymine found in DNA.
yuh
When RNA bases are laid down to build an RNA molecule, DNA is unzipped, and the new RNA molecule made is compliment of the DNA template. For example, if the DNA strand has the following bases, in this order, ATTGCACT, the new RNA molecule being made will have the base sequence UAACGTGA. After the RNA segment is made, the DNA zips back up and the RNA floats off to carry out its function in the cell.Genetic information copied from DNA is used to build three types of RNA:
1) Ribosomal RNA – The Protein Factories: Most of the RNA in cells is part of the structure of small cellular organelles known as ribosomes, the protein factories of the cells.
2) Messenger RNA – The Genetic Blueprint: Messenger RNA is a copy of the genetic information that was transcribed from the cell’s original blueprint, DNA. This copy of the genetic information is brought to the ribosome and used as instructions for building proteins.
3) Transfer RNA – The Amino Acid Suppliers: Transfer RNA is also part of the process of building proteins. Like a little truck, tRNA brings the amino acid to the ribosome. Which amino acid it brings depends on which was coded for in the mRNA instructions. At the ribosome, these amino acids are joined together to form proteins.
ATP: The Energy Transfer Molecule
Adenosine 5′-triphosphate (ATP) is a multifunctional nucleotide, most important as the “molecular currency” of intracellular energy transfer. Like tiny rechargeable batteries, ATP molecules transport chemical energy within a biological cell. These molecules can move energy around because the phosphate bonds contain a lot of potential energy, which is released when they are broken.During photosynthesis and cellular respiration, ATP is produced from ADP (adenosine diphosphate), an inorganic phosphate and added energy. ATP energy is consumed by a multitude of cellular processes.
 Chemical Structure of ATP (Adenosine Triphosphate
So how was my presentation:url-3
reference:
“What are Nucleotides and Nucleic Acids,” Science Prof Online; accessed on April 13, 2013.http://www.scienceprofonline.org/chemistry/nucleotides-nucleic-acids-atp-rna-dna.html
Advertisements

Shampoos and Conditioners

Hairshampoo-animation180px-Marge_simpson_hair

Perming, relaxing, and coloring are the harshest things you can do to your hair from a chemist’s viewpoint. But shampoos and conditioners also take advantage of chemistry to get their work done. The job of shampoo is to clean the hair, so it’s not surprising that the main ingredient in nearly all shampoos is detergent. Detergents create an anionic, or negatively charged, solution when combined with water. Such a formula is good for cleaning hair by attracting positively charged ions, such as oil. But it also tends to ruffle hair’s outer cuticle, explaining why just-washed hair is often flyaway, unmanageable, and rather dull.To counteract these undesirable effects and smooth down the hair cuticle, people often follow a shampoo with a rinse of a cationic, or positively charged, solution. In years past, people used vinegar, lemon juice, or beer for this purpose. Such rinses made hair glossier and easier to comb, but they could leave hair smelling like a tossed salad or a brewery. Modern conditioners achieve the same results and also have a pleasant fragrance more appropriate for hair.One of the most important classes of conditioning agents is the quaternary ammonium compounds. These cationic substances help counteract static electricity and flyaway hair by binding to the anionic strands of shampooed hair. Because hair that has been permed, relaxed, or colored is considerably more anionic than normal hair, manufacturers design special conditioners packed with cationic ingredients for hair that has undergone a strong chemical treatment. Some formulas can even temporarily repair or strengthen chemically processed hair through the use of cationic proteins that cling to the hair’s weakened keratin chains through hydrogen bonds.

Image

referenced: Good Hair days: A Case of Good Chemistry.”Shampoos and Conditioners.” Accessed April 3rd, 2013.http://tlc.howstuffworks.com/style/a-case-of-good-chemistry-info5.htm

Die protein…….Die…….

So i have been learning about protein and amino acids and i came across this interesting topic:

tumblr_lgnhz9BrH31qgba1lo1_500

Cooked Protein Vs. Raw Protein

Do you think that cooking food has any effect on its protein content in terms of its quality and availability to the cells of our body? For some, this question may have never crossed your mind, especially if you’re new to the idea of a raw foods diet.

How Does Heat Effect Protein?

Most people are unaware that cooking food drastically changes the chemical composition of those foods, including the extreme molecular change to protein. The fact that cooking food destroys protein is not news.“Essentials to Human Anatomy & Physiology”, Elaine N. Marieb writes:

“The fibrous structural proteins are exceptionally stable; the globular functional proteins are quite the opposite. Hydrogen bonds are critically important in maintaining their structure, but hydrogen bonds are fragile and are easily broken by heat and excesses of pH. When their three-dimensional structure are destroyed, the proteins are said to be denatured and can no longer perform their physiological roles.”

Image

Cooked Proteins Become Substantially Useless to Our Bodies

When we apply high heat to food, over 115 degrees Fahrenheit,the hydrogen bonds are destroyed and the amino acids fuse together with enzyme-resistant bonds that preclude them from being fully broken down by the body, creating coagulated proteins. This changes the particular structure of proteins, which are three-dimensional. Their particular functions depend on their specific structure, rendering them unable to ‘fit’ and interact with other molecules of complementary shape, ultimately becoming useless to the body. For example, the protein molecule hemoglobin can then no longer fit with and transport oxygen and is useless to perform its specific function.According to the Max Planck Institute, cooking foods coagulates at least 50% of the protein, making them less bio-available to the body.

Cooked Proteins & Toxicity

Now we have these newly created molecules – from cooked proteins, which the body absolutely can’t recognize as ‘food’. Now these partially broken down proteins, called polypeptides, are targeted as ‘foreign invaders’ and it becomes a toxic substance that the body needs to work extremely hard to remove. This causes the immune system has to focus energy on protecting the body from something that was eaten, instead of focusing on other areas of the body that may need immune support, causing the entire system to work and perform extremely inefficiently. This is one of the reasons why there is such a dramatic increase in white blood cell count (the immune system’s army) after cooked food is eaten.

Proteins, in order to be usable by the body need to be broken down into amino acids. Digestive enzymes can’t easily break down these ‘fused’ together proteins into simple amino acids because they’ve coagulated, putting extra strain on the digestive system and the pancreas.

To top it all off, undigested proteins are one of the main culprits for allergies, arthritis, leaky gut and auto immune diseases. Eating proteins in their raw state does not have this same effect at all, and are actually more bio-available (usable) by our bodies.

It seems quite obvious, once explained, that the body would recognize these mutant protein molecules as ‘foreign’ and not as food as this is not what’s found in nature – one of the most intuitive explanations supporting the consumption of a primarily raw foods diet.

FireAnimation

This information was obtained from:

Sacred Source Nutrition.2013. Cooked Protein vs Raw Protein.http://sacredsourcenutrition.com/cooked-protein-vs-raw-protein/

Image obtained from: https://spie.org/Images/Graphics/Newsroom/Imported-2012/004149/004149_10_fig1.jpg